
C

ICASE
COMMENTS ON HIGHLY RELIABLE

SOFTWARE FOR AVIONICS APPLICATIONS

Jacob T. Schwartz

Report No. 81-31
September 23, 1981

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley R e s e a r c h C e n t e r , H a m p t o n , V i r g i n i a 23665

O p e r a t e d by t he

U N I V E R S I T I E S SPACE qs$ RESEARCH A S S O C I A T I O N

(N A S A - C R - 1 8 5 7 9 7) COMMENTS ON HIGHLY N 8 9 - 7 2 2 9 7 RELXAOLF SOFTWAQE FOR AVIONICS APPLICATIONS
(I C A S E :) 2 3 p

Uncl as
0 0 / 0 6 0 2 2 4 3 7 5

COMMENTS ON HIGHLY RELIABLE

SOFTWARE FOR AVIONICS APPLICATIONS

Jacob T. Schwartz

Cowrant 'InsltituRe 06 M h e m a t i c d Sciences
New YOkh u n i v m a y

ABS TRACT

The d i f f e r e n c e s between hardware and sof tware r e l i a b i l i t y f o r d i g i t a l

systems are d iscussed i n t h e contex t of a p p l i c a t i o n s where a f a i l u r e may

r e s u l t i n t h e l o s s of human l i f e . In p a r t i c u l a r , i t is argued t h a t techniques

f o r guaranteeing r e l i a b i l i t y of hardware are no t n e c e s s a r i l y appropr i a t e

f o r sof tware. The p o t e n t i a l of a va r i e ty of approaches f o r a s su r ing s o f t -

w a r e r e l i a b i l i t y is discussed.

This research w a s supported under NASA Contracts No. NAS1-14472 and
NAS1-15810 whi le t h e au thor w a s i n residence a t t h e I n s t i t u t e f o r Computer
Appl ica t ions i n Science and Engineering, NASA Langley Research Center,
Hampton, VA 23665.

1. The fundamental difference between hardware and software reliability

considerations

To be willing to apply computer technology fully to avionics or other

critical applications, one would have to be convinced that the computer

systems supplied, including both hardware and software, were more reliable

than the extensively tested manual/hydraulic/electronic systems which the

computer systems were to replace.

will not be easy. Although quite challenging, the purely hardware

aspect of this problem is probably manageable by appropriately adapting

present hardware reliability determination techniques to complex digital

electronics. Software, however, is another matter, in part because we

lack even an adequate conceptual framework for assessing software relia-

bility in any quantitative way. It is therefore not at all clear how to

proceed in trying to certify the 'flight-worthiness' of any given software

module or system.

certification will continue to grow.

this informal note will attempt to make a few points which may help

clarify some of the very vexing problems that will inevitably confront

certification agencies as they struggle pragmatically with the software

enigma.

To attain and defend this conviction

Nevertheless, it is obvious that pressures for such

Leaping in where angels fear to fly,

The first assertion I would like to make is that software reliability

is a matter qualitatively different from hardware reliability.

attempts, of which there have been many, to apply concepts drawn from hard-

ware reliability theory to software tend to mask rather than clarify the

problems that must be faced in trying to assure the reliability of soft-

ware systems. Hardware reliability theory assumes that the hardware

systems which it considers malfunction and decay stochastically. Among

Consequently

-2-

other things, this leads to a notion of (preventive) maintenance:

predicting a system's pattern of decay toward failure, and by arresting

this decay in its earliest stages, one can aim to keep a system operating

close to its normal condition for extended periods of time.

assumed is in effect a process of stochastic wear.

None of these concepts apply to software.

.by

The decay

This is shown by the fact

that all computer centers schedule periodic preventative maintenance of

their hardware systems, but that none would dream of scheduling software

systems for maintenance which was either periodic or 'preventative'.

Indeed, if one knew what tests to apply during such 'preventative'

maintenance, one would apply them before initial system release; once

these tests were passed, they would never have to be applied again unless

the software changed.

A simple thought-experiment serves to emphasize this point. Suppose

I am about to board a (computer controlled) aircraft. If I am told that

its hardware has just been checked over by a skilled mechanic, who has

just replaced every slightly defective part, I will board it with increased

confidence. However, if I am told that its software has just been checked

over by a skilled programmer, who has just replaced every slightly defective

subprocedure, my desire not to board for a considerable period of time will

be overwhelming.

2. 'Design faults' and 'discontinuous behavior' in software reliability

Part of the reason for the fundamental difference in attitude revealed

by the preceding reflection lies in the fact that software failures are not

consequences of wear; rather, they are encounters with design faults. (Here

'design' is used in a sense including 'implementation'.) Another thought-

.

-3-

experiment can help clarify this point.

ordinary sort might justify the statement that the probability of an aircraft

suddenly failing in flight is less than-lo-’.

to undercut the confidence which such an estimate seems t o justify. To do

so, we have only to transpose, into the hardware realm, the type of failure

characteristic of software. Suppose, for example, that I assert of the

commercial airliner CD744 that if simultaneously

A stochastic reliability model of the

It is, however, not hard

(a)

(b) Its airspeed is x and the turning radius is R ;

(c) The ambient air pressure is exactly p ;

Its flaps and rudder are in a particular condition;

then its aerodynamic design is such that it w i l l go into an unrecoverable

stall.

are narrowly defined, but that they lie somewhere in the range of normal

commercial operation.)

reason that this catastrophic failure mode has not been observed is that

the listed parameters never simultaneously took on these critical values,

either in the hundreds of hours of precertification testing to which the

aircraft was originally subjected, or during the tens of thousands of

hours of commercial use that it has logged subsequently. If this assertion

is believed plausible, then the overwhelming part of the probability that

the CD744 should fail suddenly in flight coincides with the probability

that it should wander into the ‘design fault’ parameter region described

above.

clearly much larger than (and also qualitatively different from) the

hypothetical lo-’ which a standard stochastic failure model might yield.

(It is assumed here that these hypothetical failure parameters

Suppose that I assert in addition that the only

Whatever number one cares to ascribe to this probability, it is

-4-

Thus our willingness to regard the number produced by a stochastic

failure model as a quantity that is at all significant rests on an unspoken

major premise: that hardware simply does not fail in this discontinuous

way, i.e. that the behavior of hardware does not depend upon its control

parameters in a manner characterized by sudden, sharp breaks.

we expect the response of physical systems to their control parameters to

be monotone increasing in some ranges, monotone decreasing in others.

Therefore we believe that, by testing the response at a limited number of

points, we can at least bound their response at untested points.

out the possibility of unsuspected narrow 'pitfalls'.

on encountering such pitfalls that software fails.

Put differently,

This rules

But it is precisely

3 . Software failures

Thus the rate at which software fails is not at all the consequence

of a stochastic wear process. Rather, it reflects the rate at which design

pitfalls present in the software from its inception are encountered as

execution traverses the state space of a given program.

on the manner in which execution wanders through the logical space S of

states of the program.

This rate depends

To visualize this situation, one can think of S as a k-parameter

space of some kind, and think of the faults in it as stones scattered

through the body of a cake. A s execution proceeds it will traverse S

in a manner that is partly random, and may occasionally collide with a

fault.

removing the fault without introducing any new errors.

this carefully controlled kind can progressively reduce the density of

the faults remaining in the region of the logical space

When this happens, a very carefully controlled fix may succeed in

Repeated fixes of

S which the

.

-5-

usage generated by a particular application regularly traverses.

other hand, faults in untraversed program regions will simply remain, and

will only reveal themselves when usage shifts into some new region of the

space S . Finally, any change made in a program P from which faults

have been removed by subjecting

repair will re-introduce a new scattering of faults which will be as

difficult to remove as faults present from the beginning. Changes which

are uncontrolled or which have global logical effects are particularly

likely to have this degrading effect.

On the

P to extensive varied usage and repeated

These remarks correspond t o two common observations concerning soft-

ware errors:

(i) Errors are particularly likely to occur just after a program

has been modified.

(ii) Whenever the pattern in which a program is used shifts

significantly, design faults that have remained latent within it (perhaps

for extended periods) are likely to reveal themselves in particularly

large numbers.

Normal software test and maintenance procedures reflect some of these

observations.

systematically varied use, e.g. by insisting that every line of code

must be executed by the tests, and that the test must force all conditional

branches to be taken in both of their two possible directions. Test

Careful testing will always try to subject a program to

libraries are generally preserved so that they can be reapplied as

'regression' tests whenever a code has been modified in any way. Finally,

the experienced programmer will never remove any test code that has proved

useful from a program's source text, since he knows that it may become

necessary to revert to development-phase diagnostic activities whenever

-6-

a shift in usage pattern has revealed the presence of some hitherto

unsuspected design fault.

Note that this conceptual model of the process of software failure

differs in several very essential regards from the normal model of hard-

ware failure. In no sense do we think of program usage as introducing

faults into a program by any statistical process of wear or decay; thus

program use in a fixed or relatively fixed pattern does not test it in

the same way that protracted use would test hardware. Finally, our model

leaves no room for any notion of 'preventative' software maintenance.

4 . Detecting and eliminating discontinuous failures in complex designs

Our limited ability to deal successfully with errors in software

systems was seen in the preceding section to trace to the inherently

discontinuous nature of these errors. To fight against these limits one

must

(a)

(b)

Reduce the initial likelihood of such errors creeping in;

Improve the effectiveness of methods for detecting hidden

logical discontinuities;

(c) 'Smooth out' these logical.faults, if some way to do this can

be found;

(d) Stabilize software as much as possible, to ensure that new

faults do not creep into a system from which prior faults have been

slowly and expensively removed.

I will now comment on various approaches which these remarks suggest.

(a) Preventing logical errors

Typical errors in software systems arrange themselves along a

spectrum from superficial 'blunders' to deep-lying misapprehensions

-7-

concerning the logical/mathematical behavior of a complex algorithm.

typical blunder might be the misspelling of a variable name or the use of

the value of a quantity where a pointer t o the quantity is really required.

Improper treatment of marginal cases, for example empty arrays, full arrays,

or internal quantities which have reached their maximum allowed limits,

forms an important, and often persistent, intermediate category of errors.

Misunderstandings concerning the correct form of an algorithm can be

particularly troublesome during program development, but their crippling

effects are normally so pervasive that they tend to be corrected before a

program comes into operational use.

A

In certifying software for avionics applications one will be

concerned principally with faults capable of surviving a period of careful

and systematic testing. Such testing is likely to detect most simple

blunders, but some fraction of such blunders can creep through, and one

will therefore be concerned to reduce their number as much as possible.

The best way of doing this is to subject the text of a program to

redundancy requirements upon which programmed static checks can be based.

In particular, the use of a strongly-typed language ought t o be insisted

on. It is even desirable to carry the typing of variables which such

languages support even further, e.g. by allowing a programmer to declare

more refined logical types than the basic types of the language being

used (for example, variables characterized by their physical dimensions),

and to declare the pattern in which operations apply to objects of this

type, and also the types of results returned. A computer can then examine

for these and other types of errors, for example potentially uninitialized

variables.

-8-

(ii) Blunders creep into code in proportion to the length of the

code, and their numbers rise with the degree of technical artifice which

the code employs. It is possible to diminish both the length and the

artificiality of code by writing initial versions of it in a suitable

very high level language, and by transforming this initial version into

a final production version via mechanical or semi-mechanical steps whose

likelihood of correctness can be kept high.

is to check mechanically for certain types of formal correspondence

between a very high level primary code version and a production version

which is supposedly equivalent to this primary code. In effect, this

uses the very high level version as a tool for securing redundancy along

a logical dimension too sophisticated to be reached by more primitive type-

declarations.)

be useful in other ways also, for example in facilitating the work of

'tiger teams' conducting adversary code audits, and also in stabilizing

at least some version of a code which may have to be adapted to changing

hardware environments.

(Another possibility here

Later we will see that such a very high level code version can

(iii) Very systematic testing of code, e.g. strict application of

the rule that it must all be exercised, that all branches must be taken in

both directions, that a variable should receive data at each of its points

of use from all its potential points of definition, etc., can probably

eliminate the great majority of superficial blunders. This leaves errors

of moderate logical depth, e.g. mishandling of marginal cases, as the

likeliest source of failure in a code that has been very carefully

developed and tested. Very systematic testing should also eliminate many

of the errors of this class. On the other hand, a substantial fraction

of such errors must be expected to survive even quite thorough testing,

- 9-

especially if these errors strike only in peculiar combinations of circum-

stances. Though it is not at all clear how to smoke out errors which are

even this deeply concealed, we will try later to suggest a pragmatic tech-

nique which might afford some substantial level of protection against cata-

strophic surprises.

(iv) To rule out errors which are deeper than type errors, failures

to initialize or to update, and other equally superficial faults, one

needs to penetrate into a program's logic.

tools and methods, for example the apparatus of checkable proof which

mathematical logic supplies, would have to be used.

the likelihood that such techniques can be applied successfully.

Formal proofs of program correctness

To do this, formal mathematical

We now turn to assess

Techniques for proving programs mathematically correct are known, and

after some decades of work are just beginning to result in systems that

are more than laboratory playthings. One can, therefore, hope to use

such techniques to guarantee the correctness of programs to be used in

critical applications. However, in spite of the steadily increasing

importance of this approach, it does not appear likely to play more

than a secondary role during the next few decades.

tions support this guardedly pessimistic judgment.

The following observa-

(i) In the literature on formal proofs of program correctness, one

finds references to two significantly different levels of proof, which are

not always distinguished as carefully as they should be.

machine-checked proofs on the one hand, and detailed manual reasoning,

resembling mathematical proofs of the kind ordinarily published, on the

other. Proofs of the first kind are still extremely expensive, and have

been carried out in only a very few cases. Moreover, there is reason to

These are fully

-10-

believe that, in some of the numerical areas with which avionic software

will have to deal, formal proof techniques will be particularly hard to

apply. On the other hand, proofs that are not machine-checked but only

verified manually do not give any enormously high degree of protection

against failure, since incorrect handling of marginal cases, which is

a crucial kind of program fault, tends also to be ubiquitous in ordinary

mathematical proof. Thus manually verified proof can best be regarded

as a semi-formal technique that can help an adversary 'tiger team' (of

the kind to be discussed below) to smoke out errors that would otherwise

be overlooked. However, if it is to play this role it is essential that

the verification formalism used should retain intuitive clarity rather

than dissolving into a repellent cloud of obscure formal details.

a verification formalism properly designed to assist manual verification

would have to have quite a different flavor from one intended as a

component of a fully computer-checked system. No existing verification

system seems to have been designed with this requirement in mind.

Thus

(ii) Programs often fail because of some discrepancy between a clean

mathematical notion and the considerably more painful mass of detail used

to represent this notion within a computer. Failures are, for example,

often associated with overflows of data fields, discrepancies between true

integer arithmetic and its approximate (one's or two's complement) computer

representation, etc. While not impossible, it would be particularly

tedious to bring material of this sort into a formal framework of mathe-

matical proof.

-11-

(iii) This last problem becomes particularly acute in the case of

real arithmetic, in which connection there arises a yet more fundamental

problem.

mations used in numerical analysis are simply not known, and hence we are

not in position t o give formal proofs either of the correctness of these

approximations or of systems which rely upon them.

In most cases precise mathematical justification of the approxi-

(iv) Overall, it must be admitted that, to make formal proofs of

program correctness available on any substantial scale, a challenging

technology, of which at present we possess only some basic principles,

would have to be put into place. Techniquesreducing the presently

enormous cost and tedium of checking proofs by machine would have to

be developed very greatly. Systems for managing rigidly locked libraries

of formally verified program fragments would be required.

methods for minimizing the amount of source text that had to be reprocessed

every time some part of a software system has been changed would have to

be found. We are beginning to understand how to do all these things, and

this technology deserves to be patiently yet vigorously cultivated. Even

so, it appears unlikely that it will develop enough in the next few years

to withstand the shock of substantial practical use. Thus program proving

can be regarded as a useful auxiliary tool in justifying the airworthiness

of software, but by no means an exclusive, and probably not even an

entirely central, tool.

Practical

(b) Detecting pitfalls

If not by formal mathematical proof of correctness, then how

can potential errors in complex, discontinuous logical systems be detected?

Two methods, one of which has already been mentioned, suggest themselves.

-12-

These are

(b.i) Subjecting the systems to as wide and as varied use as possible

before the system is used in any critical application.

(b.ii) Subjecting the system to close and rigorous examination by

groups of skilled adversaries, i.e. 'tiger teams'.

Under (b.i), one's principal aim must be to secure very varied use,

An ideal would be rather than extensive but relatively stereotyped use.

to use systems or system elements known to be identical in a great variety

of very different applications, a few critical, but most non-critical.

Given this pattern of usage it would be reasonable to hope that the first

appearance of any remaining design fault would be in some non-critical

application rather than in a critical one. Then, assuming that error-

reporting was rapid and centrally managed, one could hope that enough lead-

time would be gained to prevent future errors from affecting any critical

situation.

Suppose, to be more specific, that such complex and central systems

facilities as process control or interprocessor communications came to

be resident on a fixed, mass-produced chip which came into wide use for

household and office systems, plant automation, ground transport applica-

tions, and so forth. Then it would be highly desirable to use these very

same components in avionics applications, as their non-avionics usage would

then 'protect' the avionics use against unforeseen fault, in the manner

just explained.

ware components having both critical and non-critical applications, or, this

lacking, rigid stabilization of systems whose long usage in a critical

application affords something of this same kind of protection.

The key here is rigid stabilization of hardware and soft-

-13-

'Tiger team' audit of software systems

While by no means exhaustive, an adversary 'tiger team' audit of a

software system is probably capable of smoking out numerous errors which

would escape detection even by very systematic batteries of tests.

Skilled and experienced tiger teams can in principle comprehend the logic

of a program deeply enough to surmise the existence of and examine for

many faults hidden in the interlocking logical mechanisms of a program.

However, to be effective, such teams would have to operate in a

spirit quite different from that of today's ordinary 'design walkthrough'.

Such design walkthroughs are normally allotted very limited time and

resources, and operate under the assumption that they will approve a

software product, if not on a first examination, then at least after the

second or the third examination. By contrast, a satisfactory adversary

audit would require as much as or more time and manpower than went into

system design and coding initially, and might well refuse to pass a

system even after repeated examination.

An audit team could refuse to approve a system for various reasons,

including

(i) Detected faults (which the audit team could list);

(ii) Lack of fully adequate documentation, or non-transparent design,

either of which left the audit team unable to assure itself that the

system would work as claimed;

(iii) Insufficient proof that the system supplied is precisely

equivalent to that described by its supporting material;

(iv) Inadequate testing.

-14-

Note that the possibility of rejection for reason (ii) might act

strongly to encourage the development of systems from executable specifica-

tions written in very high level languages.

clarity and simplicity.

libraries of important utility functions were available, the problem of

obtaining certification for a complex system could be reduced by using

these certified techniques, rather than entirely new methods, to imple-

ment some of the functions required.

This could conduce to design

Moreover, if pre-certified very-high-level

It may be that carefully organized adversary audits will develop as

one of the principal methods for certifying the airworthiness of software.

This would seem to be an area in which it would be appropriate to mount a

few well-chosen experimental efforts. For example:

(i) Two or more independent 'tiger teams' could be assigned to

audit the same software systems. The extent to which their findings came

to overlap (as the number of audited errors fell) might be taken as an

indication of their joint thoroughness of audit.

(ii) A system known to have reached good reliability might be

subject, on the one hand to systematic testing in the ordinary sense, on

the other hand to adversary audit, and the number and nature of errors

detected by each of these two methods compared.

Adversary audit groups may in time come to provide a specialized

function analogous to that presently provided by firms of Certified Public

Accountants, though of course they would operate in a very different

technical area, and in one that was much more critical since loss of life

rather than simple financial l o s s was at stake.

-15-

A useful by-product of a successfully completed adversary audit

might be a critical exposures list, i.e. a list of the hardware failures

from which the software was unable to recover successfully. The availa-

bility of such a list might improve the usefulness of hardware reliability

assessments very substantially.

Fault-tolerant software

A s a possible method for reducing the likelihood that software should

fail catastrophically, the following suggestion for 'fault tolerant' soft-

ware has been advanced.

(i) Find points in a software system at which the validity of an

intermediate result R can be checked fairly rapidly.

(ii) Perform this check. If it fails, the code C producing the

result R has malfunctioned. In this case, back up the system to

exactly the status which it had before the code sequence C was executed.

Then execute a different, but logically equivalent sequence C ' , i.e.

one which produces the same result R , but in a different way.

The thought here is that if the 'probability' x that C will fail is
2 small, then the probability that both C and C ' will fail is x ; hence

much smaller. The 'backup' necessary to support this scheme can be imple-

mented at a very modest cost in speed, and by multiplying the size of

memory required by a small integer factor.

This approach has some arguable advantages, but for the following

reasons is not entirely convincing.

(a) The scheme's ability to recover is based upon the ability of C '

to generate the acceptable result R that C did not produce. For this

to be possible, the common input I to C and C ' must be valid; if

it is not, then both C and C' will fail, since this failure is caused

-16-

i

by undetected bad d a t a suppl ied t o both of them.

can t r y t o back up s t i l l f u r t h e r , i .e . t o undo t h e e f f e c t s of t h e code

block C" executed j u s t before C and t r y i t s a l t e r n a t i v e . But a

scheme of t h i s s o r t r a p i d l y grows complex, and i t s execution-time c o s t

rises at least q u a d r a t i c a l l y wi th t h e number of 'check p o i n t s ' which an

e r r o r has passed before t h e occurrence of a l o g i c a l incons is tency i s

de tec ted . In a real-time system sub jec t t o f a i r l y s t r i n g e n t response-

t i m e requirements, t h i s r i s i n g execution-time may be i n t o l e r a b l e , s i n c e

i t may guarantee t h a t t h e system w i l l f a i l whenever i t backs up through

more than a few l e v e l s .

When t h i s happens, one

Thus our a b i l i t y t o make sof tware ' f a u l t t o l e r a n t ' i n t h e sense

descr ibed depends on our a b i l i t y t o s ta te the l o g i c a l cond i t ions upon

which i t s funct ioning depends f u l l y enough t o make i t un l ike ly t h a t an

e r r o r can propagate undetected through s e v e r a l success ive checks.

(b) Moreover, t he ' f a u l t t o l e r a n t ' approach i s only p o s s i b l e i f t h e

check-conditions t h a t need t o be v e r i f i e d can be eva lua ted r a p i d l y enough

not t o degrade system performance i n t o l e r a b l y .

t a b l e s are being manipulated, and i f system funct ioning depends upon the

g loba l consis tency of t hese t a b l e s , t h i s may simply not be poss ib l e .

When such t a b l e s are involved i t may a l s o be d i f f i c u l t t o des ign an

a l t e r n a t i v e code sequence C ' t h a t performs t h e s a m e l o g i c a l func t ions

as C bu t i s not i d e n t i c a l t o C' .

Espec ia l ly i f complex

(c) It can a l s o be objected t h a t t h e ' f a u l t t o l e r a n t sof tware '

2 approach does not diminish t h e p r o b a b i l i t y of system f a i l u r e t o t h e

l e v e l claimed.

if the p r o b a b i l i t i e s t h a t C and C ' both f a i l are independent. To

ensure t h i s independence, one can, f o r example, i n s i s t t h a t t h e codes

x

This low f a i l u r e p r o b a b i l i t y estimate i s only j u s t i f i e d

__ -

\

-17-

L

n

C and C ' should be developed by two different programming groups,

workingindependently. However, even if this is done, errors in C and

in C ' may not be independent. For example, both errors may trace back

to points at which the common specification from which both C and C'

were necessarily produced was ambiguous or incorrect. Moreover, we have

seen that errors often trace to mishandled marginal cases or combinations

thereof, and the very same touchy case which confused the authors of

code C may have defeated the authors of C ' .
A final comment on the 'fault tolerant' software approach is that

every detected failure of a 'first-line' code sequence C will lead

forthwith t o the repair of C . After such repair, C will presumably

never fail in the same way again. Thus the backup software C' provided

for C has the function of protecting against events that happen just

once, rather than of protecting against events that, due to wear, will

happen infinitely often.

and hardware reliability considerations.

This again shows a difference between software

(c) 'Smoothing out' logical pitfalls in complex systems

Experience suggests that the points at which much-used software

fails are often those points at which some internal table or data

structure on which the software depends, but which is only indirectly

related to the external physical situation which the software is managing,

falls into some internally inconsistent condition. One plausible way of

recovering from such situations when they are detected, especially in

an avionics application whose sole purpose is to control physical hardware,

is simply to terminate execution and to re-initialize completely, restarting

all tables from their initial conditions. This would require that the soft-

ware system must be capable of acquiring all the physical parameters which it

-18-

needs directly

being managed,

ab initio from

to impose. If

opens up.

-

from measurements that it can make on the physical system

i.e. that all data necessary for control is recoverable

the aircraft. This seems a reasonable design constraint

it is accepted, then an attractive range of possibilities

(i) To 'stress' the software system, it can be forced to re-

initialize itself repeatedly, e.g. once each second during periods of

experimental flight. This should succeed in exposing the system to many

of the conditions which it would have to manage during a real software-

fault induced re-initialization, and should make the immediate post-

initialization operation of the system particularly reliable. Note that

the kind of testing suggested uses the varying physical condition of the

aircraft to expose the software to many different test conditions.

(ii) One can run and compare several system versions, identical in

their code but initiallzed at different moments, or one running continuously,

the other frequently re-initialized in the manner suggested above. Any

failure of these several software processes to transmit substantially

the same controls to the aircraft effectuators would point to some

potentially dangerous discontinuity.

A system built according to this structural principle might operate

as follows. Main-line software would transmit controls to the various

physical subsystems aboard an aircraft. Subsidiary 'parasitic' software

processes would monitor the activity of this main-line software system,

verifying that the control signals it was generating always lay within

reasonable ranges, that they kept the aircraft operating in a reasonable

range, and that the main-line software was carrying out all its periodic

activities on schedule. If any of these checks failed, an irmediate

-19-

status dump would be taken and saved for later examination; then the

system would immediately be re-initialized, would re-acquire the data it

needed, and would attempt to continue. Note that re-initialization will

always involve re-acquisition of any currently active user-supplied command

parameters. These parameters must therefore be held in non-volatile

registers. If re-initialization is completely successful, no device

control or control display should be lost for more than a fraction of a

second; thus the system user need not be actively concerned with the fact

that a software fault has interrupted operation, though of course each

such incident should be reportable to the software maintenance group and

their team of adversaries.

Note that by insisting that avionics software systems be 'fully

restartable' in the manner suggested, we are attempting to tie their

behavior to the continuous responses of the physical systems which they

regulate, thereby 'smoothing out' logical discontinuities which would

otherwise allow catastrophic failures unpredictable by testing. Note also

that the recovery scheme advanced bears some relationship to the 'fault

tolerant' software notion discussed earlier. However, instead of relying

on microscopic internal checks of result acceptability, we propose to

monitor the software system's external behavior, and instead of trying

to apply a restricted correction when a fault is detected we propose to

take the cruder and more radical step of re-initializing completely.

Moreover, instead of using an alternative code sequence to recover, we

use the same code that has just failed, but change the data on which it

is acting.

-20-

System re-initialization should also involve a series of fast checks

to verify that all physical, control, and communication systems are in

working order.

can be programmed to report this failure and allow for operation in a

suitable fallback mode. This suggests that ability to check rapidly for

the operability of all subsystems may become a design requirement.

If some subsystem is found to be inoperable, the software

5. Stabilization of software systems

The preceding discussion emphasizes the difficulty and high expense

that will inevitably attach to attempts to guarantee the correct functioning

of critical software. It follows that it will be important to stabilize

this software when extensive usage and careful audit have brought it to

a condition of high reliability.

logical stabilization, since any uncontrolled change, even a 'small' one,

is apt to reproduce the scattering of small hidden errors in which the

danger of failure lies.

Here stabilization must mean precise

The following techniques might help to achieve the necessary level

of stabilization.

(a) Critical, and hopefully also complex, functions might be put

Such hardware onto special-purpose chips which were then widely used.

embodiments would guarantee precise identity of structure over a wide

range of applications, aid modularity, and reduce the run-time cost of

using standardized rather than hand-tailored software components.

Typical candidates for such embodiments might be chips to manage a

-21-

priority queue of processes, to handle interprocessor communications in a

standard way, etc.

(b) Very-high-level library versions of common avionics functions

Note that formal correctness-proof can be developed and pre-certified.

methods will apply more easily to text of this kind than to more detail-

ridden code. High-level, abstract program versions can serve as stable

standards which can impart a useful degree of logical stability to

production codes developed from them. A s already noted, the availability

of high-level libraries of standard algorithms can also facilitate the

work of software audit teams.

(c) Efforts can be made to develop other kinds of strictly re-

usable software modules or packages.

In particular, the following question could usefully be addressed:

is it possible to develop any significant collection of software modules

which can be used without change for a wide variety of aircraft?

